Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available May 1, 2026
-
Free, publicly-accessible full text available May 28, 2026
-
Free, publicly-accessible full text available December 31, 2025
-
The shallow water flow model is widely used to describe water flows in rivers, lakes, and coastal areas. Accounting for uncertainty in the corresponding transport-dominated nonlinear PDE models presents theoretical and numerical challenges that motivate the central advances of this paper. Starting with a spatially one-dimensional hyperbolicity-preserving, positivity-preserving stochastic Galerkin formulation of the parametric/uncertain shallow water equations, we derive an entropy-entropy flux pair for the system. We exploit this entropy-entropy flux pair to construct structure-preserving second-order energy conservative, and first- and second-order energy stable finite volume schemes for the stochastic Galerkin shallow water system. The performance of the methods is illustrated on several numerical experiments.more » « less
An official website of the United States government

Full Text Available